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S ervice level agreements (SLAs) are widely adopted performance-based contracts in operations management practice,
and fill rate is the most common performance metric among all the measurements in SLAs. Traditional procedures

characterizing the order-up-to level satisfying a specified fill rate implicitly assume an infinite performance review horizon.
However, in practice, inventory managers are liable to maintain and report fill rates over a finite performance review hori-
zon. This horizon discrepancy leads to deviation between the target fill rate and actual achieved fill rate. In this study, we
first examine the behavior of the fill rate distribution over a finite horizon with positive lead time. We analytically prove
that the expected fill rate assuming an infinite performance review horizon exceeds the expected fill rate assuming a finite
performance review horizon, implying that there exists some inventory “waste” (i.e., overstocking) when the traditional
procedure is used. Based on this observation and the complexity of the problem, we propose a simulation-based algo-
rithm to reduce excess inventory while maintaining the contractual target fill rate. When the lead time is significant rela-
tive to the length of the contract horizon, we show that the improvement in the inventory system can be over 5%.
Further, we extend our basic setting to incorporate the penalty for failing to meet a target, and show how one can solve
large-scale problems via stochastic approximation. The primary managerial implication of our study is that ignoring the
performance review horizon in an SLA will cause overstocking, especially when the lead time is large.
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1. Introduction

“Inventory, a fundamental evil, declines in value
by 1% to 2% a week in normal times, faster in
tough times like the present. You want to man-
age it like you’re in the dairy business. If it gets
past its freshness date, you have a problem.”

Tim Cook, CEO of Apple Inc.

Inventory is one of the largest investments made by
most businesses. It is also well recognized that inven-
tory management is one of the most challenging busi-
ness functions. According to a monthly survey by the

U.S. Census Bureau,1 in November 2016, the value of
manufacturers’ and trade inventories (including
retailers and merchant wholesalers) was estimated at
$1827.5 billion, which accounts for more than 10% of
the annual gross domestic product (GDP) of the
United States. Against this backdrop, even slight
improvements in inventory management will result
in dramatic savings due to the size of the gross vol-
ume. In this study, we first demonstrate a common
problem that afflicts service level agreements (SLAs),
then propose an innovative solution which can be
easily implemented by a wide range of practitioners
to reduce inventory levels while achieving target
service levels.
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Fill rate is defined as the average fraction of
demand that is immediately satisfied from stock. An
earlier noteworthy study has shown that using
order-up-to level determined by current commercial
software/algorithms will lead to substantially higher
achieved fill rates as compared to the fill rates speci-
fied by contract over finite performance review hori-
zon with zero-lead time (Thomas 2005). This is to
say that the current formula used in textbooks and
prevalent commercial software2 results in excess
inventory, which translates to unnecessarily high
inventory holding costs. The root cause of this over-
estimation is that the traditional formula always
assumes the performance review horizon to be in-
finite, whereas in practice the SLA requires the sup-
plier to meet the target fill rate over a specific, finite,
review period (e.g., a month, week or quarter). Con-
sidering the enormous gross inventory levels
($1827.5 billion in the United States), the possible
savings from improving the inventory system are
substantial. In Table 1 below, we give an example of
our results. When inventory managers check the fill
rate biweekly, on average they actually achieve a
92.73% fill rate, while the contractual target fill rate
is only 90%. Now consider what happens in terms of
the order-up-to level. This 2.73% difference translates
into overstocking by 4.04%.

Despite several research papers having identified
and described this interesting overestimation phe-
nomenon from different perspectives (Banerjee and
Paul 2005, Chen et al. 2003, Thomas 2005), little has
been published to tackle this very important but over-
looked issue. One possible reason that previous stud-
ies have not resolved this overestimation issue is the
fact that the fill rate is a random variable over a finite
review horizon, and as a result, the problem of deter-
mining stock levels that deliver a given fill rate is ana-
lytically intractable. In this research, we study the fill
rate behavior in the setting of order-up-to policy with
a finite review horizon and positive lead time. More
importantly, we provide a practical tool that can be
readily implemented by inventory managers and/or
commercial software packages. To achieve this, we

first prove structural results for expected fill rate over
a finite horizon that lead to upper and lower bounds.
We use these bounds in a simulation-based optimiza-
tion algorithm to solve the problem. Simulation-based
optimization is a viable tool when facing analytically
intractable models like the one presented in this study
(Fu et al. 2005). Another explanation for past neglect
of this overestimation problem may be due to the
tactic of using overstock to avoid invoking the penalty
clause in the SLA. However, we show that as long as
the penalty rate is moderate, the firm still faces a seri-
ous overstocking problem because of the variability
generated by the probability distribution of fill rate
over a finite horizon.

The problem formulation, as we demonstrate later
in this study, requires the computation of the expec-
tation of a rational function of dependent random
variables, which is a formidable analytical problem.
The problem is further exacerbated by the under-
lying distributions being high dimensional and non-
factorizable. The only recourse is to compute the
expectation through Monte-Carlo methods. We
propose two such methods, a vanilla technique
followed by a more efficient stochastic optimization.
While results obtained are qualitatively similar in
the two cases, the second method demonstrates fas-
ter convergence.

The operations management literature has been
rather casual about tying the formula for expected fill
rate to an infinite horizon, while in fact applying it
under finite horizons of various lengths. Our paper
subjects the implicit assumption that this abuse is
innocuous to close scrutiny, and finds that it is not as
innocent as has been tacitly assumed in the literature.
In essence, we find that ignoring lead time and using
an infinite horizon formula in a finite horizon con-
text together conspire to inflate inventory levels
significantly.

To summarize, there are several unique contribu-
tions of this study to the academic literature as well
as to practice. Firstly, we investigate how the perfor-
mance review horizon, lead time, and demand dis-
tribution affect the achieved fill rate in a finite
horizon. Previous studies (Banerjee and Paul 2005,
Chen et al. 2003, Thomas 2005, Zhong et al. 2017)
have focused only on inventory systems with zero
lead time. In this study, we incorporate lead time
into our model, analyze it theoretically, and show
empirically that lead time worsens the overstocking
problem in the sense that the higher the lead time,
the higher the amount of overstocking. Secondly, we
analytically prove that the achieved fill rate in the
finite horizon is higher than the target fill rate,



variable following the steady-state on-hand inven-
tory distribution, and also when the initial on-hand
inventory is equal to the order-up-to level. Further,
we find that the state of the initial inventory system
is critical to the magnitude of the overstocking
problem. The overstocking problem is much more
serious for the inventory system when the initial on-
hand inventory is equal to the order-up-to level.
Finally, we develop a practical tool for inventory
managers to set up the optimal inventory level
needed to achieve a contractually specified fill rate.
Such practical tools and software could help firms in
a wide range of industries achieve inventory cost
savings while simultaneously providing customers
the contractually committed service level.

The rest of the study is organized as follows: In the
next section, we review the related literature. Section 3
describes the theoretical setting and discusses the
behavior of the fill rate random variable with positive
lead time. In section 4, we first prove structural prop-
erties of average fill rate over a finite horizon and then
design a simulation-based algorithm based in part on
the properties established earlier. In section 5, we con-
duct extensive numerical analysis to compare against
the traditional formula and provide managerial impli-
cations. In section 6, we extend our basic model to
incorporate the penalty into consideration and dis-
cuss the performance of an alternative algorithm. The
study concludes with a summary and avenues for
future research.

2. Literature Review

An SLA is a type of performance-based contract in
which the supplier commits to achieving a specified
service level over a number of time periods defined
as the performance review horizon (Chen and Tho-
mas 2015). Service level metrics can be classified into
the following three categories: a-service-level, b-
service-level, and c-service-level. a-service-level,
commonly known as Type 1 service level, is defined
as the fraction of cycles in which there is no stockout.
Ready rate, a variation of a-service-level, measures



under the normally distributed demand. Sobel
(2004) derives the formulas for the fill rate under
general demand distributions for both single-stage
and multiple-stage supply chain systems that use
base-stock policies. Zhang and Zhang (2007), Zhang
et al. (2010), Zhang (2012) extend Sobel’s (2004) work
to the general periodic review policy in which the
inventory position is reviewed once every R periods
for single-stage and two-stage inventory systems.
Note that if R = 1, the general periodic review policy
is equivalent to the traditional periodic-review order
up to policy. In a follow-up study, Teunter (2009)
derived the same expression for the fill rate in Zhang
and Zhang (2007) using an alternative approach and
generalized to (R, Q) policies. Guijarro et al. (2012)
develop a general method to compute the fill rate for
discrete demand distribution under the setting of lost
sales. Paul et al. (2015) have studied the inventory
planning problem for modular products with indi-
vidual and aggregate fill rate constraints. The focus
of the aforementioned works is to characterize the fill
rate in a single or multistage inventory system over
an infinite review horizon, while the review of the
inventory system is often conducted in a finite per-
formance horizon.

Thus, there is a clear gap in the extant literature; fill
rate over a finite horizon with positive lead time,
which is what transpires in practice, has not been well
studied. In this study, we first look into the impact of
the interaction of positive lead time and finite review
horizon. After observing the behavior of the fill rate
distribution, we analytically show that expected fill
rate over a finite review horizon is always greater
than the expected fill rate over an infinite review hori-
zon, which complements the previous literature
(Chen et al. 2003, Thomas 2005). Correspondingly, we



quantity on-order + net inventory) back up to the
order-up-to level s. Note that the replenishment order
quantity always equals the immediately preceding
demand. As a result, we can rewrite OOt as Rt�1
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targets. By comparing the four sub-figures in Figure 1,
we first find that the expected achieved fill rate is







LEMMA 2. When E[Di] = 1 for i = 1, 2, . . ., there
exists a vL > 0 such that

E
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the initial on-hand inventory distribution follows the
steady-state on-hand inventory distribution. The ini-
tial state fill rate formulation differs from this set-up
in the following two respects: The initial on-hand
inventory distribution is not the steady-state distribu-
tion, and the horizon length is finite rather than infi-
nite. On the other hand, the steady-state fill rate
formulation differs from the set-up that would make
the traditional formulation exact in one respect rather
than two: the horizon length is finite rather than

infinite. Therefore, one would expect the steady-state
fill rate formulation to result in a smaller discrepancy
than the initial state fill rate formulation. This is pre-
cisely what we observe in all of our numerical obser-
vations, for a range of demand distributions and
parameter settings. From a practical perspective, the
above observation suggests that the inventory man-
ager should be more cautious regarding the over-
stocking issue if the product is relatively new, or in
the case of a newly signed contract in which the

Table 2 The Comparison of Order-up-to Level between Traditional Formula and Proposed Algorithm for Initial State with Erlang (3,1)

Lead
time

Target
fill rate

Performance review horizon

∞ 10 20 30 40 50 60

L = 0 75% 2.824 2.735 (3.17%) 2.779 (1.61%) 2.794 (1.07%) 2.802 (0.78%) 2.806 (0.63%) 2.809 (0.54%)
80% 3.179 3.079 (3.15%) 3.127 (1.61%) 3.145 (1.07%) 3.154 (0.78%) 3.159 (0.63%) 3.162 (0.54%)
85% 3.619 3.506 (3.12%) 3.561 (1.61%) 3.580 (1.07%) 3.591 (0.78%) 3.596 (0.63%) 3.600 (0.54%)
90% 4.215 4.086 (3.08%) 4.149 (1.56%) 4.170 (1.07%) 4.182 (0.78%) 4.189 (0.63%) 4.193 (0.54%)
95% 5.186 5.024 (3.13%) 5.105 (1.56%) 5.131 (1.07%) 5.146 (0.78%) 5.151 (0.68%) 5.156 (0.59%)

L = 1 75% 6.364 5.960 (6.35%) 6.160 (3.20%) 6.227 (2.15%) 6.263 (1.59%) 6.283 (1.27%) 6.295 (1.07%)
80% 6.841 6.430 (6.01%) 6.634 (3.03%) 6.702 (2.03%) 6.739 (1.49%) 6.759 (1.20%) 6.770 (1.03%)
85% 7.423 7.004 (5.64%) 7.209 (2.88%) 7.282 (1.90%) 7.318 (1.42%) 7.340 (1.12%) 7.350 (0.98%)
90% 8.196 7.764 (5.27%) 7.976 (2.69%) 8.048 (1.81%) 8.088 (1.32%) 8.108 (1.07%) 8.124 (0.88%)
95% 9.426 8.970 (4.83%) 9.191 (2.49%) 9.270 (1.66%) 9.311 (1.22%) 9.334 (0.98%) 9.348 (0.83%)

L = 2 75% 9.757 8.924 (8.53%) 9.347 (4.20%) 9.485 (2.78%) 9.557 (2.05%) 9.596 (1.65%) 9.621 (1.39%)
80% 10.328 9.506 (7.96%) 9.922 (3.93%) 10.058 (2.61%) 10.129 (1.93%) 10.169 (1.54%) 10.194 (1.29%)
85% 11.019 10.204 (7.40%) 10.616 (3.66%) 10.750 (2.44%) 10.820 (1.81%) 10.861 (1.44%) 10.885 (1.22%)
90% 11.929 11.120 (6.79%) 11.522 (3.42%) 11.661 (2.25%) 11.731 (1.66%) 11.772 (1.32%) 11.795 (1.12%)
95% 13.360 12.545 (6.10%) 12.949 (3.08%) 13.086 (2.05%) 13.158 (1.51%) 13.197 (1.22%) 13.223 (1.03%)

L = 3 75% 13.082 11.701 (10.56%) 12.426 (5.02%) 12.651 (3.30%) 12.764 (2.43%) 12.828 (1.94%) 12.870 (1.62%)
80% 13.733 12.390 (9.78%) 13.092 (4.66%) 13.310 (3.08%) 13.421 (2.27%) 13.485 (1.81%) 13.525 (1.51%)
85% 14.516 13.208 (9.01%) 13.885 (4.35%) 14.102 (2.86%) 14.208 (2.12%) 14.272 (1.68%) 14.311 (1.42%)
90% 15.541 14.266 (8.20%) 14.919 (4.00%) 15.131 (2.64%) 15.238 (1.95%) 15.298 (1.56%) 15.336 (1.32%)
95% 17.142 15.895 (7.28%) 16.522 (3.61%) 16.740 (2.34%) 16.840 (1.76%) 16.899 (1.42%) 16.941 (1.17%)

Table 3 The Comparison of Order-up-to Level between Traditional Formula and Proposed Algorithm for Steady State with Erlang (3,1)

Lead
time

Target
fill rate

Performance review horizon

∞ 10 20 30 40 50 60

L = 0 75% 2.824 2.735 (3.17%) 2.779 (1.61%) 2.794 (1.07%) 2.802 (0.78%) 2.806 (0.63%) 2.809 (0.54%)
80% 3.179 3.079 (3.15%) 3.127 (1.61%) 3.145 (1.07%) 3.154 (0.78%) 3.159 (0.63%) 3.162 (0.54%)
85% 3.619 3.506 (3.12%) 3.561 (1.61%) 3.580 (1.07%) 3.591 (0.78%) 3.596 (0.63%) 3.600 (0.54%)
90% 4.215 4.086 (3.08%) 4.149 (1.56%) 4.170 (1.07%) 4.182 (0.78%) 4.189 (0.63%) 4.193 (0.54%)
95% 5.186 5.024 (3.13%) 5.105 (1.56%) 5.131 (1.07%) 5.146 (0.78%) 5.151 (0.68%) 5.156 (0.59%)

L = 1 75% 6.364 6.177 (2.93%) 6.264 (1.56%) 6.297 (1.05%) 6.314 (0.78%) 6.323 (0.63%) 6.330 (0.54%)
80% 6.841 6.642 (2.91%) 6.734 (1.56%) 6.769 (1.05%) 6.787 (0.78%) 6.797 (0.63%) 6.804 (0.54%)
85% 7.423 7.207 (2.91%) 7.307 (1.56%) 7.345 (1.05%) 7.365 (0.78%) 7.376 (0.63%) 7.383 (0.54%)
90% 8.196 7.960 (2.88%) 8.068 (1.56%) 8.112 (1.03%) 8.132 (0.78%) 8.144 (0.63%) 8.152 (0.54%)
95% 9.426 9.159 (2.83%) 9.279 (1.56%) 9.329 (1.03%) 9.352 (0.78%) 9.371 (0.59%) 9.375 (0.54%)

L = 2 75% 9.757 9.485 (2.78%) 9.607 (1.54%) 9.656 (1.04%) 9.681 (0.78%) 9.695 (0.63%) 9.705 (0.54%)
80% 10.328 10.043 (2.76%) 10.169 (1.54%) 10.222 (1.03%) 10.247 (0.78%) 10.262 (0.63%) 10.273 (0.54%)
85% 11.019 10.718 (2.73%) 10.850 (1.54%) 10.906 (1.03%) 10.933 (0.78%) 10.949 (0.63%) 10.960 (0.54%)
90% 11.929 11.603 (2.73%) 11.749 (1.51%) 11.807 (1.03%) 11.836 (0.78%) 11.854 (0.63%) 11.865 (0.54%)
95% 13.360 13.001 (2.69%) 13.158 (1.51%) 13.223 (1.03%) 13.256 (0.78%) 13.275 (0.63%) 13.289 (0.54%)

L = 3 75% 13.082 12.742 (2.60%) 12.889 (1.48%) 12.951 (1.00%) 12.983 (0.76%) 13.001 (0.62%) 13.012 (0.54%)
80% 13.733 13.379 (2.58%) 13.530 (1.48%) 13.594 (1.01%) 13.629 (0.76%) 13.646 (0.63%) 13.659 (0.54%)
85% 14.516 14.148 (2.54%) 14.300 (1.49%) 14.371 (1.00%) 14.406 (0.76%) 14.424 (0.63%) 14.438 (0.54%)
90% 15.541 15.150 (2.51%) 15.310 (1.49%) 15.382 (1.03%) 15.420 (0.78%) 15.442 (0.63%) 15.458 (0.54%)
95% 17.142 16.715 (2.49%) 16.891 (1.46%) 16.974 (0.98%) 17.008 (0.78%) 17.033 (0.63%) 17.050 (0.54%)
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inventory system starts at the order-up-to level when
they face a fill rate contract.

Next we observe that the order-up-to level required
to deliver a given target expected fill rate is less than





generates a solution sequence {s1, s2, . . ., sn, . . .} as
follows:

snnnn



respect to the logarithm of the running time in seconds,
for both approaches. We make a few observations. First
of all, SA is non-monotone and fluctuating due to the
stochastic noise, but it immediately (in less than 0.5 s)
moves to a steady phase where the sequence is con-
verging to the optimal order-up-to level. Secondly, we
observe that the stochastic algorithm converges to the
optimum fairly quickly; it is able to reach close enough
to the optimum without even using all the simulated
data, at a point when the bisection method has not yet
finished one iteration.

Next, we investigate the time cost of stochastic
approximation as opposed to the bisection method on
simulated data with combination of following param-
eters: c = 1, 3, 5, 7, T = 20, 40, 60, and L = 0, 1, 2, 3.
The experimental results are presented in Table 5. We
let the bisection method run until the change was less
than 0.005 and the stochastic algorithm terminates
after one-pass of the simulated data. We observe that
the mean value of the order-up-to levels obtained
from the stochastic approximation is very close to the
bisection method, with a difference of less than

0.005. On the other hand, while preserving solution
quality, the stochastic algorithm obtains much faster
empirical convergence with up to 79 speed-up com-
pared to the bisection method.

7. Conclusions

Our study was motivated by observing the discrep-
ancy between the traditional fill rate formula, which
applies only in an infinite horizon model, and the
finite-horizon service-level agreements that are

implemented in practice. We find that under certain
circumstances (e.g., high lead time relative to the
length of the planning horizon, variations in demand
conditions or product features from one SLA to the
next) this discrepancy can have a significant impact
on achieved fill rate over a finite performance review
horizon. It is very important to note that imposing a
finite-horizon, service level contract will inflate the
achieved expected fill rate to a level well above the
contractually specified target, which results in sub-
stantially higher inventory related costs. For instance,



holding costs, expected backorder costs, and the
expected cost of not meeting the fill-rate stipulated by
the SLA over a finite horizon. We analyze the above
stated components of the objective function sepa-
rately, but not all together in a single objective func-
tion. Second, SLAs are widely applied in many
different contexts. We focus on their application in
inventory management systems. Future research
could expand the current idea to investigate other set-
tings. For example, the staffing decisions in a Call
Center where SLA is also commonly implemented
(Xia et al. 2015). Third, we restrict the inventory pol-
icy to a base stock policy. It is worthwhile to explore
whether a similar overstocking problem will occur
with other inventory policies (e.g., (R, Q) policy).
Notwithstanding these limitations, this study closes a
significant gap in the literature by investigating the
role of positive lead time and provides a solution to
the problem. We believe that the current research is
also relevant to the practice in the sense that our
results can be integrated into commercial software
and generates tremendous savings for managers fac-
ing the SLAs.
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Notes

1Most recent statistics are available at https://www.cen
sus.gov/mtis/index.html.
2For example, the SAS Inventory Replenishment Planning
9.1 Users Guide provides the detailed formula used in the
software, which can be retrieved at http://support.sas.
com/documentation/onlinedoc/91pdf/sasdoc_91/inven
tory_ ug_7307.pdf.
3We thank the one anonymous Reviewer and Senior Edi-
tor for suggesting that we consider the initial on-hand
inventory starting from the steady state.
4Note that there is an inconsistency between Equation (4)
above and Equation (6) in Sobel (2004). Essentially, there
was a typographic error in the subscript of the summation
in Sobel (2004), where one should have summed from
Lc + 1 instead of Lc + 2.
5We thank the one anonymous Reviewer and Senior Edi-
tor for suggesting this. Due to the page limit, we have
attached the results when the initial on-hand inventory
equals to the order-up-to level for Normal and Poisson

distributed demands in the appendix. Additional results
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